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Abstract

The problem of generating prescribed strain waves in an elastic bar by means of a pair of piezoelectric actuators driven

in phase by a linear power amplifier was considered theoretically and experimentally. The power amplifier was

characterized by its DC voltage gain and 3 dB cut-off frequency unloaded, and by its output resistance and inductance.

With the assumption of one-dimensional (1D) wave propagation in the bar, including the actuator region, a linear

difference equation was derived for the required input voltage to the power amplifier in terms of the strain associated with

the prescribed wave. This difference equation was solved numerically for a bell-shaped strain wave and for a single-period

sine strain wave. After identification of the linear power amplifier, two tests were carried out with the aim to generate the

two strain waves in an aluminium bar instrumented with semi-conductor strain gauges. Very good agreement was obtained

between the implemented and required input voltages, output voltages and output currents of the power amplifier, and

good agreement was achieved between the implemented and prescribed strain waves.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric elements in the form of thin plates are increasingly used as sensors (e.g. Refs. [1,2]), and
actuators (e.g. Refs. [3,4]), in structural, space, medical and other applications. This is largely explained by
their ability of giving electrical response when subjected to mechanical stimuli, and vice versa, as described by
two coupled constitutive equations [5], the actuator equation and the sensor equation, that relate the
mechanical and electrical fields in the piezoelectric material. Plate-shaped piezoelectric elements also have
large bandwidth, and they are suitable for integration into structures.

Studies of the interaction of piezoelectric actuators, driven by linear power amplifiers, and host structures
generally involve consideration of the two constitutive equations, the dynamics of the amplifier and associated
electric circuits, the dynamics of the actuator, and the dynamics of the host structure. Sometimes, however,
one or several of these considerations can be left out. In particular, the sensor equation and the dynamics of
the amplifier can be neglected if the actuators are driven by an amplifier with sufficiently low output
impedance and large bandwidth. Furthermore, the actuator may be considered quasi-static if it is sufficiently
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

Latin

a distance between bar cross-sections 0 and 1
A cross-sectional area
c wave speed
C capacitance
d piezoelectric constant
e strain
E Young’s modulus
f frequency
F frequency-dependent part of transfer function K

G voltage gain of amplifier
h height
i current
k square root of piezoelectric coupling coefficient
K transfer function, voltage to strain
l length
L inductance
R resistance
t time
U voltage
w width
x axial coordinate
y transverse coordinate (horizontal)
z transverse coordinate (vertical)
Z impedance, characteristic impedance

Greek letters

e permittivity
y Heaviside unit step function

n Poisson’s ratio
r density
o angular frequency

Superscripts

0 ideal amplifier
E electrical
imp implemented
M mechanical
pre prescribed
req required

Subscripts

0 actuator region; cross-section at actuator/
bar interface

1 bar cross-section at which strain is
measured

a actuator
ax axial
b bending
c core
cut cut-off (3 dB reduction)
em electromagnetic
L loaded amplifier
out amplifier output
tr transverse
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small. Such simplifications were made, e.g., in the early work by Crawly and de Luis [6] on the interaction of
piezoelectric actuators and an Euler–Bernoulli beam.

The dynamics of the actuator was taken into account, e.g., by Pan et al. [7], who studied an Euler–Bernoulli
beam with attached piezoelectric actuators. Allowance for the interaction of host structure and electrical
circuits, and for the two coupled constitutive equations was made, e.g., by Hagood et al. [8], Thornburgh and
Chattopadhyay [9], and Thornburgh et al. [10]. Similar considerations were made also in studies of passive
electrical damping systems [11]. Studies of power requirements, with consideration of the dynamics of the
amplifier, were carried out, e.g., by Niezrecki and Cudney [12] and Leo [13].

A theoretical basis for generation of extensional waves in a linearly viscoelastic bar with a pair of
piezoelectric actuators driven in phase by a linear power amplifier was developed in a preceding paper by the
authors [14]. Allowance was made for the two constitutive equations, the dynamics of the amplifier, the
dynamics of the actuator, and the dynamics of the bar. The problems of finding (i) the wave output produced
by a given voltage input to the amplifier and (ii) the voltage input to the amplifier required to generate a desired
wave output were considered, both in the frequency domain. In control applications involving waves, the
second of these problem is particularly important as waves prescribed on the basis of sensor data can be used to
cancel unwanted waves. Such cancellation is the basis, e.g., for the concept of a ‘‘mechanical wave diode’’,
which uses feed-forward control in order to achieve one-way transmission of waves in an elastic bar [15].
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In this paper, the problem of generating prescribed strain waves in an elastic bar with a pair of piezoelectric
actuators driven in phase by a linear power amplifier is considered theoretically and experimentally.
In Section 2, the theoretical results of Jansson and Lundberg [14] are adapted to a case involving an elastic bar
and a power amplifier characterized by its DC voltage gain and 3dB cut-off frequency unloaded, and by its output
resistance and inductance. It is shown that in this case, the problem of generating prescribed strain waves can be
solved in the time domain. In this way, difficulties at frequency zero can be avoided for prescribed strain waves with
non-zero DC component. In Section 3, the procedures are described for identification of a linear power amplifier
and experimental implementation of two prescribed strain waves, one with and one without a DC component, in an
aluminium bar. In Section 4, theoretical results for the required input voltage to the amplifier, the required output
voltage and output current from the amplifier and the prescribed strain in the bar are compared with corresponding
results from the experimental implementation. Conclusions are summarized in Section 5.
2. Theoretical basis

2.1. Model of the electromechanical system

Consider the electromechanical system in Fig. 1 consisting of a long elastic bar with a pair of attached
piezoelectric actuators driven in phase by a linear power amplifier.

The length of the actuator region �x0oxox0 is l0 ¼ 2x0, where x is an axial coordinate as shown. Thin
bonding layers are assumed to have the only effect of perfectly attaching the actuators to the bar. The cross-
sections of the bar and the actuators are rectangular, and the full cross-sections are symmetric with respect to
the y- and z-axis. Outside the actuator region, the bar has height h, width w and cross-sectional area A ¼ hw.
In the core of the actuator region, it has height hc, width wc and cross-sectional area Ac ¼ hcwc. Each actuator
has height ha, width wa and cross-sectional area Aa ¼ hawa. Therefore, the total cross-sectional area is
A0 ¼ 2Aa+Ac within the actuator region.

The Young’s modulus of the bar material is assumed to be E, while that of the actuators, when short-
circuited, is assumed to be Ea. Further, it is assumed that initially plane cross-sections remain plane and that
the stress is uni-axial in the x direction. Therefore, the effective Young’s modulus is E0 ¼ (2AaEa+AcE )/A0

within the actuator region. Similarly, the densities are assumed to be r and ra, respectively, and therefore the
effective density is r0 ¼ (2Aara+Acr)/A0 within this region. The wave speeds in the bar and actuator regions
are c ¼ (E/r)1/2 and c0 ¼ (E0/r0)

1/2, respectively, while the characteristic impedances in these regions are
ZM
¼ AE/c and ZM

0 ¼ A0E0=c0, respectively.
The piezoelectric material is assumed to be polarized in the z direction and to have a linear

electromechanical response. In addition to the short-circuited Young’s modulus Ea, this response is
characterized by the permittivity ea and piezoelectric constant da ¼ �d31. The electrical fields between the
conducting layers on the upper and lower faces of the actuators are assumed to be parallel to the z-axis, and
the effects of strains in the y and z directions are neglected.
Fig. 1. Electromechanical system consisting of linear power amplifier, piezoelectric actuators and bar.



ARTICLE IN PRESS

Fig. 2. Equivalent circuit of linear power amplifier driving actuator–bar assembly. The voltage gain of the unloaded amplifier is G(o) and
its output impedance is ZE

outðoÞ. The load impedance provided by the actuator–bar assembly is ZE(o).
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The actuators are driven in parallel and in phase by a linear power amplifier as shown in Fig. 2. The
amplifier is characterized by its voltage gain G(o) unloaded and its output impedance ZE

outðoÞ. The electrical
impedance of the loading actuator–bar assembly is ZE(o). As a result of the mechanical response of the
actuators, strain waves are generated which propagate symmetrically in opposite directions through the bar,
away from the actuator region. The associated strain ê1ðoÞ ¼ êðx1;oÞ is measured at a distance a ¼ x1�x0

from the interface x ¼ x0, where the strain is ê0ðoÞ ¼ êðx0;oÞ.

2.2. Dynamics of the electromechanical system

The output voltage Û0ðoÞ and the output current î0ðoÞ of the amplifier can be expressed in terms of the
input voltage ÛðoÞ as

Û0 ¼ GLÛ ; î0 ¼
Û0

ZE
, (1a,b)

where

GL ¼
ZE

ZE þ ZE
out

G (2)

is the voltage gain of the amplifier loaded by the electrical impedance of the actuator–bar assembly. This
impedance is [14]

ZE ¼
ZE

0

1� k2
ð1� 4F 0ZM

a =ZM Þ
, (3)

where the function F0(o) is given by

F 0 ¼
eiox0=c0 � e�iox0=co

p0 eiox0=c0 � q0 e�iox0=c0
(4)

with

p0 ¼ 1þ
ZM

0

ZM
; q0 ¼ 1�

ZM
0

ZM
. (5)

Here k2
¼ d2

aEa=�a is the piezoelectric coupling coefficient [5]. The quantity ZE
0 ¼ ZE

a =2 is the electrical
impedance of the two actuators, electrically in parallel and mechanically unloaded, ZE

a ðoÞ ¼ 1=ioCa is the
electrical impedance of a single mechanically unloaded actuator with capacitance Ca ¼ eal0wa/ha. The quantity
ZM

a ¼ AaEa=iol0 is the mechanical impedance of a single short-circuited actuator with one end fixed and the
other end loaded quasi-statically in the axial direction.

The strains ê1ðoÞ and ê0ðoÞ are related to each other and to the input voltage ÛðoÞ of the amplifier through
the relations

ê1 ¼ ê0 e
�ioa=c, (6)

ê0 ¼ KLGLÛ . (7)
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The transfer function KL(o), from the output voltage Û0 of the amplifier to the strain ê0 in the bar at the
end of the actuator region, is given by [14]

KL ¼ 2
AaEa

AE

da

ha

F0. (8)

From Eqs. (4) and (5) it follows that KL(0) ¼ 0, which means that it is not straight forward to solve the
inverse problem of (6) and (7) in the frequency domain. Therefore, the gain of the unloaded amplifier and the
output impedance of the amplifier are expressed parametrically as

G ¼
G0

1þ io=ocut
; ZE

out ¼ Rþ ioL, (9)

which makes it possible to transform Eqs. (6) and (7) into the time domain. Here G0 is the DC gain of the
unloaded amplifier, ocut ¼ 2pfcut is the cut-off angular frequency at which |G(o)| is 3 dB below its low-
frequency limit G0, R is the output resistance and L is the output inductance. With this parametric
representation of the amplifier, Eqs. (2)–(8) and inversion of the Fourier transforms, give

e1ðtÞ ¼ e0ðt� a=cÞ, (10)

UðtÞ ¼ Uðt� t0Þ þ
1

2

1

G0

ha

da

AE

AaEa

p0e0ðtÞ � q0e0ðt� t0Þ þ 8k2RCa

AaEa

l0Z
M
ðe0ðtÞ � e0ðt� t0ÞÞ

�

þ ð1=ocut þ 2ð1� k2
ÞRCaÞ p0 de0

dt
ðtÞ � q0 de0

dt
ðt� t0Þ

� �

þ 8k2
ðRCa=ocut þ LCaÞ

AaEa

l0Z
M

de0

dt
ðtÞ �

de0

dt
ðt� t0Þ

� �

þ 2ð1� k2
ÞðRCa=ocut þ LCaÞ p0 d

2e0

dt2
ðtÞ � q0 d

2e0

dt2
ðt� t0Þ

� �

þ 8k2
ðLCa=ocutÞ

AaEa

l0Z
M

d2e0

dt2
ðtÞ �

d2e0

dt2
ðt� t0Þ

� �

þ2ð1� k2
ÞðLCa=ocutÞ p0 d

3e0

dt3
ðtÞ � q0 d

3e0

dt3
ðt� t0Þ

� ��
, ð11Þ

where t0 ¼ l0/c0 is the transit time for a wave through the actuator region. Thus, the problem of finding the
required input voltage U(t) for a prescribed strain e0(t) becomes a linear difference equation, while the inverse
problem of finding the strain e0(t) produced by a given input voltage U(t) becomes a linear third-order
difference-differential equation.

For a wave defined by a prescribed strain pulse e0(t), the difference equation (11) can be solved for the
required input voltage U(t) to the amplifier in successive intervals of length t0. This was done numerically for
two different strain waves. The first wave was defined by the bell-shaped strain pulse

e0 ¼ e0maxsin
2
ðpt=2t0Þ½yðtÞ � yðt� 2t0Þ� (12)

with amplitude e0max and duration 2t0, and the second wave was defined by the single-period sine strain pulse

e0 ¼ e0max sin ðpt=2t0Þ½yðtÞ � yðt� 4t0Þ� (13)

with amplitude e0max and duration 4t0, where y(t) is the Heaviside unit step function. Both waves are also
defined by the delayed strain pulse e1(t) according to Eq. (10). The normalized strain pulses (12) and (13) and
their normalized spectra are shown in Figs. 3 and 4, respectively, where time is normalized to t0 and frequency
to f0 ¼ 1/t0. With the required input voltages U(t) to the amplifier known, the corresponding output voltages
U0(t) and output currents i0(t) were determined from Eqs. (1)–(5) and (9) by use of the discrete Fourier
transform.
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Fig. 3. (a) Prescribed bell-shaped strain pulse and (b) its spectrum.

Fig. 4. (a) Prescribed single-period sine strain pulse and (b) its spectrum.
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The following section presents the implementation of the strain pulses (12) and (13) experimentally. Then, in
Section 4, comparisons will be made between the implemented and required results for the input voltage U(t),
the output voltage U0(t) and the output current i0(t), and between the implemented and prescribed strains
e1(t).

3. Experimental tests

3.1. Identification of the linear power amplifier

A linear power amplifier (EPA-104, Piezo Systems, Inc.) was used to drive the actuators. This amplifier has
an output current constraint of 200mA. Therefore its response is linear only if the input voltage and the load
impedance are such that the output current is within this constraint. The DC voltage gain of the unloaded
amplifier was continuously variable from zero to 20. In all identification and wave generation tests the gain
control was kept in the same position corresponding to a gain of approximately 12. The input voltage to the
amplifier was provided by a signal generation card (DAQ-2010, Adlink Technology, Inc.).

Within its linear range, the power amplifier is characterized by its voltage gain unloaded G(o), and its
output impedance ZE

outðoÞ as illustrated in Fig. 2. These complex-valued functions of frequency were identified
non-parametrically as follows. The amplifier was loaded with each of a series of 10 precision resistors (MP 930,
Caddock Electronics, Inc.) with resistances 10, 20, 30, 40, 50, 75, 100, 150, 200 and 300O. For each such load,
the amplifier was subjected to a transient input voltage U(t) taken as an approximately rectangular pulse with
duration 8 ms. In each of these tests, the amplitude of the input voltage was chosen so that the output current
of the amplifier would not exceed the 200mA limit. The output voltage was reduced by a factor of 21 in a
voltage divider consisting of two precision resistors (MP 925, Caddock Electronics, Inc.) with resistances 5 and
100 kO. The input voltage and the reduced output voltage were recorded by use of a digital oscilloscope card
(UF.3122, Strategic Test Scandinavia AB). The sampling rate was 10MHz, and no filter was used. All
identification tests were carried out at room temperature.
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With ZE(o) replaced by Rn in Fig. 2, the output current î0 can be expressed in two ways as Û0=Rn ¼

GÛ=ðZE
out þ RnÞ. For each discrete frequency o, this leads to the over-determined linear system of 10

equations

ðÛ=Û0ÞnG � ð1=RnÞZ
E
out ¼ 1; n ¼ 1; 2; . . . ; 10 (14)

for the two unknowns G(o) and ZE
outðoÞ. This system can be written as Bp ¼ b, where B is a 10� 2 matrix, p is

a 2� 1 column vector with the two unknowns as elements, and b is a 10� 1 column vector with each element
equal to one. The best solution of this system in the sense of least squares gives the non-parametric estimation
of G(o) and ZE

outðoÞ. It is obtained as pLS ¼ B+b, where B+
¼ (B*B)�1B* is the Moore–Penrose pseudo-

inverse matrix and B� ¼ B̄
T
is the adjoint (conjugate and transpose) matrix of B. The normalized error is

defined as x ¼ r*r/b*b with r ¼ BpLS�b.
The parameters G0, ocut ¼ 2pfcut, R and L of the power amplifier model defined by Eq. (9) were estimated

from the non-parametric results for G(o) and ZE
outðoÞ. The DC gain of the unloaded amplifier G0 was

estimated by averaging Re[G(o)] in the interval [0,10] kHz of low frequencies. The cut-off frequency ocut was
obtained from GðocutÞ

�� �� ¼ G0=
ffiffiffi
2
p

. The resistance R and the inductance L were estimated by using the method
of least squares in the frequency interval [10,100] kHz. The estimated parameters were used in the wave
generation tests.
3.2. Generation of prescribed strain waves

The experimental set-up used for generation of prescribed strain waves is shown in Fig. 5.
An aluminium bar with length 2.80m, height h ¼ 4.0mm and width w ¼ 4.0mm was used. Within the

actuator region, the bar was milled symmetrically from two opposite sides over the length 95.4mm to height
hc ¼ 1.02mm, while its width wc ¼ 4.0mm was left the same as in the rest of the bar. The material of the bar
had Young’s modulus E ¼ 69GPa, Poisson’s ratio n ¼ 0.30 and density r ¼ 2700 kg/m3.

In each milled slot, three piezoelectric plates (Piezo Systems, Inc., T226-A4-203Y, ceramic type 5A4E) with
length 31.8mm, height ha ¼ 0.66mm and wa ¼ 6.4mm were bonded in mechanical contact with each other,
and connected electrically in parallel, so that they formed a compound actuator with length l0 ¼ 95.4mm. The
piezoelectric material of the plates had short-circuited Young’s modulus Ea ¼ 66GPa, density 7800 kg/m3,
piezoelectric constant d31 ¼ �190� 10�12m/V and permittivity ea ¼ 1.6� 10�8A s/Vm.

The dimensions and material properties of the actuator–bar assembly correspond to parameters as follows.
The wave speed was c ¼ 5050m/s in the bar and c0 ¼ 3300m/s in the actuator region. The transit time for a
wave through the actuator region was t0 ¼ 28.9 ms, and its inverse, corresponding to the number of transits per
Fig. 5. Experimental set-up for generation of prescribed strain waves. Lengths in mm.
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unit time, was f0 ¼ 34.6 kHz. The characteristic impedance was ZM
¼ 219N s/m in the bar and ZM

0 ¼

254N s=m in the actuator region. The capacitance of an unloaded compound actuator was Ca ¼ 14.7 nF, and
the piezoelectric coupling coefficient was k2

¼ 0.150.
The bar was kept vertical, clamped at its upper end at a distance of 950mm from the upper end of the

actuator region and free at its lower end. In the lower part of the bar, at a distance of a ¼ 800mm from the
lower end of the actuator region, the bar was instrumented with three semi-conductor strain gauges (Kyowa,
type KSP-2-120-E3), viz., two with axial orientation opposite to each other and one with transverse
orientation. The relatively large distance from the actuator region to the instrumented section of the bar was
chosen in order to reduce the electromagnetic noise from the actuators picked up by the strain gauges. For the
same reason, the actuators and the strain gauges were surrounded by Faraday cages, grounded together with
the bar.

The two compound actuators, electrically in parallel, were driven by the linear power amplifier with input
from the signal generation card. Each strain gauge was connected to a bridge amplifier (Vishay Measurements
Group, 2210) with bandwidth 100 kHz (3 dB). Before the arrival of reflected waves from the ends of the bar,
the input and output voltages U(t) and U0(t) of the power amplifier, the axial strains e0axðtÞ and e00axðtÞ, and the
transverse strain etr(t) were recorded by means of the digital oscilloscope card. No filters were used, and the
sampling rate was 10MHz.

In spite of the measures taken, each of the three measured strains was contaminated with electromagnetic
noise from the pulse generation. However, a favourable angular orientation of the bar around its axis turned
out to be such that none of the three strain gauges faced the closest wall of the Faraday cage. With this
orientation of the bar the electromagnetic noise eem was minimized and equalized, i.e., it was the same for each
measured strain. Furthermore, contributions from accidental bending 7eb to the measured axial strains had
the same magnitude but opposite signs. Under these conditions, the three measured strains can be expressed as
e0ax ¼ e1 þ eem þ eb, e00ax ¼ e1 þ eem � eb, and etr ¼ �ne1+eem, where n is Poisson’s ratio. Therefore, with
suppression of the contributions from both electromagnetic noise and bending, the strain e1(t) can be
evaluated numerically from the expressions

e1 ¼
eax � etr

1þ n
; eax ¼

e0ax þ e00ax

2
. (15)

For both the bell-shaped strain wave and the single-period sine strain wave, the implemented output current
i0(t) was obtained numerically from the implemented output voltage U0(t), which was recorded, and by use of
Eqs. (1b), (3)–(5), and a second-order Butterworth filter with cut-off frequency 100 kHz. Thus, the
implemented output current is based on both measurement, theory and filtering. For the single-period sine
strain wave, the same filter was used also for the required output current.

Two tests were carried out at room temperature with the aim to produce the waves defined by the prescribed
bell-shaped strain pulse (Eq. (12)), with amplitude e0max ¼ 7 m and duration 2t0 ¼ 57.8 ms and the single-period
sine strain pulse (Eq. (13)), with amplitude e0max ¼ 5 m and duration 4t0 ¼ 115.6 ms.

4. Results and discussion

Figs. 3 and 4 show that the spectra of the prescribed strain pulses e0(t) are significant only below the
approximate frequency fE35 kHz. At this frequency, the wave length in the aluminium bar is l ¼ c/fE0.14m.
This wave length is much larger than the transverse dimension 4mm of the bar, and therefore the one-
dimensional (1D) model used for the actuator–bar assembly can be expected to be valid [16].

The results of the identification of the linear power amplifier are shown in Fig. 6. The DC gain of the
unloaded amplifier and the 3 dB cut-off frequency were estimated to be G0

¼ 12.1 and fcut ¼ 82 kHz,
respectively. For the magnitude of the gain G of the unloaded amplifier, the parametric and non-parametric
results are very close up to more than 100 kHz. However, the parametric results for the real and imaginary
parts of this gain are somewhat higher and lower in magnitude, respectively, than the corresponding non-
parametric results. The output resistance and the output inductance of the amplifier were estimated to be
R ¼ 8.1O and L ¼ 2.4 mH, respectively. For both the real and the imaginary parts of the output impedance
ZE

out, the parametric and non-parametric results are quite close up to more than 100 kHz, which suffices here.
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Fig. 6. (a) Voltage gain G, (b) output impedance ZE
out and (c) minimized error x versus frequency f. Non-parametric (irregular curves) and

parametric (smooth curves) results.

A. Jansson et al. / Journal of Sound and Vibration 306 (2007) 751–765 759
At higher frequencies, the non-parametric results become irregular. The reason is that the Fourier transform
ÛðoÞ of the rectangular input pulse U(t) to the amplifier is zero at frequencies that are integral multiples of the
inverse of the pulse width 8 ms. Therefore, the excitation in the identification tests was weak or non-existent at
and around 125 kHz. By reducing the pulse width further, e.g., to 5 ms, one can move the lowest problematic
frequency up to 200 kHz, which is far outside the frequency interval of interest.

The ratio GL=G ¼ ZE=ðZE þ ZE
outÞ of the gain of the loaded amplifier to that of the unloaded amplifier

versus frequency f is shown in Fig. 7. This result shows the effect of the output impedance ZE
out ¼ Rþ ioL on

the gain of the amplifier subjected to the load ZE of the actuator–bar assembly. The frequency dependence of
the gain ratio is explained by the inductive nature of the output impedance and the capacitive nature of the
load impedance which make ZE þ ZE

out

�� ��o ZE
�� ��. The result shows that the magnitude |GL/G|, which is equal to

one at low frequencies, has increased to 1.002 at 40 kHz and to 1.016 at 100 kHz. At these frequencies, the
magnitude |G| of the (parametric) gain of the unloaded amplifier has decreased to 0.90 and 0.63, respectively,
of its value G0 at low frequencies. This shows that for the amplifier used the effect of finite cut-off frequency is
significantly larger than that of finite output impedance. For frequencies below 20 kHz, an ideal amplifier
model with constant gain G ¼ G0 and zero output impedance ZE

out ¼ 0 would be quite accurate. Under such
conditions ocut ¼N, R ¼ 0 and L ¼ 0, and therefore all that remains on the right-hand side of Eq. (11) are
the first three terms. Under the additional condition of matched impedances, ZM

0 ¼ ZM , Eq. (5) give p0 ¼ 2
and q0 ¼ 0, and Eq. (11) is further reduced to

UðtÞ ¼ Uðt� t0Þ þ
1

G0

ha

da

AE

AaEa

e0ðtÞ. (16)
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Fig. 7. Ratio GL/G of the gain of the loaded amplifier to that of the unloaded amplifier versus frequency f.

Fig. 8. Generation of bell-shaped strain wave: (a) required and implemented input voltages U versus time t; and (b) spectrum of required

input voltage.

A. Jansson et al. / Journal of Sound and Vibration 306 (2007) 751–765760
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Fig. 10. Generation of bell-shaped strain wave. Prescribed and implemented strain e1 versus time t.

Fig. 9. Generation of bell-shaped strain wave. Required and implemented (a) output voltage U0 and (b) output current i0 versus time t.

A. Jansson et al. / Journal of Sound and Vibration 306 (2007) 751–765 761
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Because of its simplicity, such a model may be advantageous in control applications where high
computational speed is of primary importance. However, the full Eq. (11) was used to produce the results
which follow.

The results obtained for generation of the bell-shaped strain wave of Fig. 3 are shown in Figs. 8–10. The
required and implemented input voltages U versus time t, and the spectrum of the required input voltage, are
shown in Fig. 8. The implemented voltage is very close to that required. The spectrum is significant up to more
than 100 kHz, which means that the output impedance of the amplifier has a certain influence. The required
and implemented output voltages U0 and output currents i0 are shown versus time t in Fig. 9. The
implemented voltage and current are very close to those required. The maximum output current is well below
the current limit of 200mA, which means that the amplifier operated within its linear range. All changes in the
input voltage, the output voltage, and the output current occur in a time approximately equal to the duration
2t0E58 ms of the prescribed strain pulse. The prescribed and implemented strains e1 are shown versus time t in
Fig. 10. As shown by Eq. (10), this prescribed strain is just a delayed version of the prescribed strain e0. Even
though the implemented strain is only about 7 m, it is seen to be insignificantly disturbed by noise, and the
agreement with the prescribed strain is good. Without the considerations and measures behind Eqs. (15),
however, the level of electromagnetic noise was about 2 m, i.e., it was quite comparable to that of the signal.

The results obtained for generation of the single-period sine strain wave of Fig. 4 are shown in Figs. 11–13.
The required and implemented input voltages U versus time t, and the spectrum of the required input voltage,
Fig. 11. Generation of single-period sine strain wave: (a) required and implemented input voltages U versus time t and (b) spectrum of

required input voltage.



ARTICLE IN PRESS

Fig. 12. Generation of single-period sine strain wave. Required and implemented (a) output voltage U0 and (b) output current i0 versus

time t.

Fig. 13. Generation of single-period sine strain wave. Prescribed and implemented strain e1 versus time t.
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are shown in Fig. 11. The implemented voltage is again very close to that required. The spectrum is significant
up to about 50 kHz, which means that the output impedance of the amplifier has little influence. The required
and implemented output voltages U0 and output currents i0 are shown versus time t in Fig. 12. The
implemented voltage and current are again very close to those required. The maximum output current is well
below the current limit of 200mA, which means that the amplifier operated within its linear range. All changes
in the input voltage, the output voltage, and the output current again occur in a time approximately equal to
the duration 4t0E116 ms of the prescribed strain pulse. The prescribed and implemented strains e1 are shown
versus time t in Fig. 13. Even though the implemented strain is only 5 m, it is seen to be insignificantly disturbed
by noise, and the agreement with the prescribed strain is good also in this case.
5. Conclusions

The main conclusions of this study are as follows: (i) with the parametric model of the amplifier, the input
voltage required for generation of a prescribed strain wave in the bar can be obtained by solving a linear
difference equation for the input voltage. (ii) For the amplifier used, the effect of finite cut-off frequency was
larger than that of finite output impedance. (iii) For frequencies below 20 kHz, an ideal amplifier model with
constant gain and zero output impedance would be highly accurate. Because of its simplicity, such a model is
advantageous in control applications where high computational speed is of primary importance. (iv) Very
good agreements were obtained between implemented and required input voltages to the amplifier, output
voltages from the amplifier, and output currents from the amplifier. (v) Good agreement was obtained
between implemented and prescribed strain waves. (vi) The model of the electromechanical system consisting
of linear power amplifier and actuator–bar assembly is quite accurate under the conditions of the wave
generation tests carried out.
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